Evolving Biological Clocks using Genetic Regulatory Networks

نویسندگان

  • Johannes F. Knabe
  • Chrystopher L. Nehaniv
  • Maria J. Schilstra
  • Tom Quick
چکیده

We study the evolvability and dynamics of artificial genetic regulatory networks (GRNs), as active control systems, realizing simple models of biological clocks that have evolved to respond to periodic environmental stimuli of various kinds with appropriate periodic behaviors. GRN models may differ in the evolvability of expressive regulatory dynamics. A new class of artificial GRNs with an evolvable number of complex cis-regulatory control sites – each involving a finite number of inhibitory and excitatory binding factors – is introduced, allowing realization of complex regulatory logic. Previous work on biological clocks in nature has noted the capacity of clocks to oscillate in the absence of environmental stimuli, putting forth several candidate explanations for their observed behavior, related to anticipation of environmental conditions, compartmentation of activities in time, and robustness to perturbations of various kinds, or unselected accidents of neutral selection. Several of these hypotheses are explored by evolving GRNs with and without (gaussian) noise and “black out periods” for environmental stimulation. Robustness to environmental perturbation experienced by the lineage appears to account for some, but not all, dynamical properties of the evolved networks including unselected abilities such as capacity to adapt to shift in phase or frequency of environmental stimulus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In silico Evolution of Biological Clocks with Genetic Regulatory Networks

Genetic Regulatory Networks (GRNs) are the control systems of all cells. Their dynamics are of crucial importance in development [4] but also in the ongoing, reactive, metabolism [1]. A characteristic example of such responsive regulation are circadian rhythms, which were present already in early life forms [10]. Following Winfree [10, 11], we ask 1) How is it that biological clocks can adapt, ...

متن کامل

Comparison of MLP NN Approach with PCA and ICA for Extraction of Hidden Regulatory Signals in Biological Networks

The biologists now face with the masses of high dimensional datasets generated from various high-throughput technologies, which are outputs of complex inter-connected biological networks at different levels driven by a number of hidden regulatory signals. So far, many computational and statistical methods such as PCA and ICA have been employed for computing low-dimensional or hidden represe...

متن کامل

Evolving Spiking Neural Networks in the GReaNs (Gene Regulatory evolving artificial Networks) Plaftorm

GReaNs (which stands for Genetic Regulatory evolving artificial Networks) is an artificial life software platform that has previously been used for modeling of evolution of gene regulatory networks able to process signals, control animats and direct multicellular development in two and three dimensions. The structure of the network in GReaNs is encoded in a linear genome, without imposing any r...

متن کامل

H∞ Sampled-Data Controller Design for Stochastic Genetic Regulatory Networks

Artificially regulating gene expression is an important step in developing new treatment for system-level disease such as cancer. In this paper, we propose a method to regulate gene expression based on sampled-data measurements of gene products concentrations. Inherent noisy behaviour of Gene regulatory networks are modeled with stochastic nonlinear differential equation. To synthesize feed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006